On Rotating a Qubit
نویسنده
چکیده
The state function of a quantum object is undetermined with respect to its phase. This indeterminacy does not matter if it is global, but what if the components of the state have unknown relative phases? Can useful computations be performed in spite of this local indeterminacy? We consider this question in relation to the problem of the rotation of a qubit and examine its broader implications for quantum computing.
منابع مشابه
A qubit strongly coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation
We investigate the spontaneous emission (SE) spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. For the weak-coupling case, the SE spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Then, the asymmetry (of the location and heights of the two peaks) of the ...
متن کاملQubit-oscillator dynamics in the dispersive regime: Analytical theory beyond the rotating-wave approximation
We generalize the dispersive theory of the Jaynes-Cummings model beyond the frequently employed rotating-wave approximation RWA in the coupling between the two-level system and the resonator. For a detuning sufficiently larger than the qubit-oscillator coupling, we diagonalize the non-RWA Hamiltonian and discuss the differences to the known RWA results. Our results extend the regime in which di...
متن کاملMeasurement-Induced State Transitions in a Superconducting Qubit: Beyond the Rotating Wave Approximation.
Many superconducting qubit systems use the dispersive interaction between the qubit and a coupled harmonic resonator to perform quantum state measurement. Previous works have found that such measurements can induce state transitions in the qubit if the number of photons in the resonator is too high. We investigate these transitions and find that they can push the qubit out of the two-level subs...
متن کاملEffect of random telegraph noise on entanglement and nonlocality of a qubit-qutrit system
We study the evolution of entanglement and nonlocality of a non-interacting qubit-qutrit system under the effect of random telegraph noise (RTN) in independent and common environments in Markovian and non-Markovian regimes. We investigate the dynamics of qubit-qutrit system for different initial states. These systems could be existed in far astronomical objects. A monotone decay of the nonlocalit...
متن کاملDecoherence effects on quantum Fisher information of multi-qubit W states
Quantum fisher information of a parameter characterizing the sensitivity of a state with respect to parameter changes. In this paper, we study the quantum fisher information of the W state for four, five, six and seven particles in decoherence channels, such as amplitude damping, phase damping and depolarizing channel. Using Krauss operators for decoherence channels components, we investigate t...
متن کاملSuperconducting phase qubit coupled to a nanomechanical resonator: Beyond the rotating-wave approximation
We consider a simple model of a Josephson junction phase qubit coupled to a solid-state nanoelectromechanical resonator. This and many related qubit-resonator models are analogous to an atom in an electromagnetic cavity. When the systems are weakly coupled and nearly resonant, the dynamics is accurately described by the rotating-wave approximation (RWA) or the Jaynes-Cummings model of quantum o...
متن کامل